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Problem Set 6

What are the limits of regular languages? What are the powers of context-free grammars? In this
problem set, you'll find out.

As always, please feel free to drop by office hours, ask on Piazza, or send us emails if you have any
questions. We'd be happy to help out.

This problem set has 36 possible points. It is weighted at 5% of your total grade.

Good luck, and have fun!

Due Monday, May 18th at the start of lecture.



Problem One: The Myhill-Nerode Theorem (5 Points)
The Myhill-Nerode theorem is one of the trickier and more nuanced theorems we've covered this quarter.
This question explores what the theorem means and, importantly, what it doesn't mean.

Let Σ = {a, b} and let L = { w ∈ Σ*  |  |w| is even }.

i. Show that L is a regular language.

ii. Prove that there is a infinite set S ⊆ Σ* where there are infinitely many pairs of distinct strings
x, y ∈ S such that x ≢L y.

iii. Without using the Myhill-Nerode theorem, prove that there is  no infinite set  S ⊆ Σ* where  all
pairs of distinct strings x, y ∈ S satisfy x ≢L y.

The distinction between parts (ii) and (iii) is important for understanding the Myhill-Nerode theorem. A
language is nonregular not if you can find infinitely many pairs of distinguishable strings, but rather if you
can find infinitely many strings that are all pairwise distinguishable. This is a subtle distinction, but it's a
critically important one.

Problem Two: Balanced Parentheses (6 Points)
Consider the following language over Σ = {(, )}:

L₁ = { w ∈ Σ* | w is a string of balanced parentheses }

This question explores properties of this language.

i. Prove that L₁ is not a regular language.

Let's say that the nesting depth of a string of balanced parentheses is the maximum number of unmatched
open parentheses at any point inside the string. For example, the string ((())) has nesting depth three,
the string (()())() has nesting depth two, and the string ε has nesting depth zero.

Consider the language L₂ = { w ∈ Σ* | w is a string of balanced parentheses and w's nesting depth is at
most four }. For example, ((())) ∈ L₂, (()()) ∈ L₂, and (((())))(()) ∈ L₂, but ((((())))) ∉ L₂ be-
cause although it's a string of balanced parentheses, the nesting goes five levels deep.

ii. Design a DFA for L₂, showing that L₂ is regular.

iii. Since L₂ is regular, it's also context-free. Design a context-free grammar for L₂.



Problem Three: Subsets of Regular Languages (6 Points)
The first nonregular language we encountered was the language {anbn | n ∈ ℕ}. This problem explores a
related language and some of its properties.

Let Σ = {a, b} and let L = { w ∈ Σ* | w has the same number of a's and b's }.

i. Prove that L is not a regular language.

ii. Find a language L' ⊆ L such that L' contains infinitely many strings and L' is a regular language.
Justify why L' is infinite and show that it's regular.

iii. Prove that there is no language L' ⊆ {anbn |  n ∈ ℕ} that contains infinitely many strings and is a
regular language.

Your results from parts (ii) and (iii) show that if a language is nonregular, it might contain an infinite regu-
lar language as a subset, but it might not. It really depends on the choice of language.

Problem Four: State Lower Bounds (5 Points)
The Myhill-Nerode theorem we proved in lecture is actually a special case of a more general theorem
about regular languages that can be used to prove lower bounds on the number of states necessary to con-
struct a DFA for a given language.

i. Let L be a language over Σ. Suppose there's a finite set S such that any two distinct strings x, y ∈ S
are distinguishable relative to L (that is, x ≢L y). Prove that any DFA for L must have at least |S|
states.

ii. Let Σ = {a, b} and let L = { w ∈ Σ* |  |w| ≡₄ 2 }. Design the smallest possible DFA for L. Then,
using the theorem you proved in part (i), prove that the DFA you designed is the smallest possible
DFA for L.

Problem Five: Closure Properties Revisited (4 Points)
When building up the regular expressions, we explored several closure properties of the regular languages.
This problem explores some of their nuances.

The regular languages are closed under complementation: If L is regular, so is L.

i. Prove or disprove: the nonregular languages are closed under complementation.

The regular languages are closed under union: If L₁ and L₂ are regular, so is L₁ ∪ L₂.

ii. Prove or disprove: the nonregular languages are closed under union.

We know that the union of any two regular languages is regular. Using induction, we can show that the
union of any finite number of regular languages is also regular. As a result, we say that the regular lan-
guages are closed under finite union.

An infinite union is the union of infinitely many sets. For example, the rational numbers can be expressed
as the infinite union { x/1 | x ∈ ℤ } ∪ { x/2 | x ∈ ℤ } ∪ { x/3 | x ∈ ℤ } ∪ … out to infinity.

iii. Prove or disprove: the regular languages are closed under infinite union.



Problem Six: Designing CFGs (10 Points)
Below are a list of alphabets and languages over those alphabets.  For each language, design a context-free
grammar that generates that language, then show derivations for the indicated strings.

i. Given Σ = {a,  b,  c}, write a CFG for the language {  w ∈ Σ* |  w contains  aa as a substring }.
Show a derivation of the strings aa, baac, and ccaabb using your grammar.

ii. Given Σ = {a, b}, write a CFG for the language L = { w ∈ Σ* | w is not a palindrome }. That is, w
is not the same when read forwards and backwards, so aab ∈ L and baabab ∈ L, but aba ∉ L and
bb ∉ L. Show derivations of aab and abbaba.

iii. Given Σ = {1,  +, ≟}, write a context-free grammar for the language { 1m+1n 1≟ m+n |  m,  n ∈ ℕ }.
Show derivations for 111+1 1111≟  and for +1 1≟ .

iv. Given Σ = {a, b}, write a CFG for the language L = { w ∈ Σ*  |  |w| ≡4 0, and the first quarter of
the characters in w contains at least one b }. For example, baaa ∈ L,  bbbb ∈ L,  abbbbbba ∈ L,
bbbaaabbbaaa ∈  L,  ababbbbbbbbb ∈  L,  but  abbb ∉  L,  ε  ∉  L,  b ∉  L,  aabbbbaa ∉  L,  and
aaabbbbbbbbb ∉  L. (For simplicity, I've underlined the first quarter of the characters in each
string). Show a derivation of baaa, abaaaaaa, and baaaaaaa.

v. Let's imagine that you're going for a walk with your dog, but this time don't have a leash. As in
Problem Set Five, let Σ = {y, d}, where y means that you take a step forward and d means that
your dog takes a step forward. A string in Σ* can be thought of as a series of events in which ei -
ther you or your dog moves forward one unit. For example, the string “yydd” means that you take
two steps forward, then your dog takes two steps forward. Let L = { w ∈ Σ* | w describes a series
of steps where you and your dog arrive at the same point }. Write a CFG that generates L. Show
derivations of the strings yyyddd, ydyd, and yyddddyy using your grammar.

Extra Credit Problem: Voting Machines (1 Point Extra Credit)
You are part of a team working on designing a voting machine for a general election. You are in charge of
designing the software systems necessary to ensure that no one can vote twice. (For the purposes of this
problem, let's imagine that someone else is tasked with recording vote totals.) Specifically, after everyone
finishes casting votes, you would like to be able to inspect the machine and determine, with 100% cer-
tainty, whether anyone voted twice. You don't need to report who voted twice, just whether anyone voted
twice.

Because people will be coming to vote at the machine all throughout election day,  the voting machine
needs to have some kind of persistent storage space to record information about who has voted so far. It
also needs some kind of “working memory” for other tasks like letting the user choose who to vote for,
displaying information, etc. For the purposes of this problem, we're only interested in the persistent stor-
age space.

Prove that if there are n ≥ 1 people in the electorate and the voting machine behaves correctly on all in-
puts, it must have at least n+1 bits of memory in its persistent storage.


